Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2315167121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557177

RESUMO

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.


Assuntos
Rede de Modo Padrão , Roedores , Ratos , Animais , Córtex Cerebral , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
2.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693501

RESUMO

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here we use multisite GCaMP fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes- the retrosplenial cortex, cingulate cortex, and prelimbic cortex- as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and discovered that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.

3.
Nat Commun ; 14(1): 3843, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386013

RESUMO

Number sense, the ability to decipher quantity, forms the foundation for mathematical cognition. How number sense emerges with learning is, however, not known. Here we use a biologically-inspired neural architecture comprising cortical layers V1, V2, V3, and intraparietal sulcus (IPS) to investigate how neural representations change with numerosity training. Learning dramatically reorganized neuronal tuning properties at both the single unit and population levels, resulting in the emergence of sharply-tuned representations of numerosity in the IPS layer. Ablation analysis revealed that spontaneous number neurons observed prior to learning were not critical to formation of number representations post-learning. Crucially, multidimensional scaling of population responses revealed the emergence of absolute and relative magnitude representations of quantity, including mid-point anchoring. These learnt representations may underlie changes from logarithmic to cyclic and linear mental number lines that are characteristic of number sense development in humans. Our findings elucidate mechanisms by which learning builds novel representations supporting number sense.


Assuntos
Aprendizagem , Neurônios , Humanos , Cognição , Redes Neurais de Computação
4.
J Neurosci ; 42(20): 4164-4173, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35483917

RESUMO

The social worlds of young children primarily revolve around parents and caregivers, who play a key role in guiding children's social and cognitive development. However, a hallmark of adolescence is a shift in orientation toward nonfamilial social targets, an adaptive process that prepares adolescents for their independence. Little is known regarding neurobiological signatures underlying changes in adolescents' social orientation. Using functional brain imaging of human voice processing in children and adolescents (ages 7-16), we demonstrate distinct neural signatures for mother's voice and nonfamilial voices across child and adolescent development in reward and social valuation systems, instantiated in nucleus accumbens and ventromedial prefrontal cortex. While younger children showed greater activity in these brain systems for mother's voice compared with nonfamilial voices, older adolescents showed the opposite effect with increased activity for nonfamilial compared with mother's voice. Findings uncover a critical role for reward and social valuative brain systems in the pronounced changes in adolescents' orientation toward nonfamilial social targets. Our approach provides a template for examining developmental shifts in social reward and motivation in individuals with pronounced social impairments, including adolescents with autism.SIGNIFICANCE STATEMENT Children's social worlds undergo a transformation during adolescence. While socialization in young children revolves around parents and caregivers, adolescence is characterized by a shift in social orientation toward nonfamilial social partners. Here we show that this shift is reflected in neural activity measured from reward processing regions in response to brief vocal samples. When younger children hear their mother's voice, reward processing regions show greater activity compared with when they hear nonfamilial, unfamiliar voices. Strikingly, older adolescents show the opposite effect, with increased activity for nonfamilial compared with mother's voice. Findings identify the brain basis of adolescents' switch in social orientation toward nonfamilial social partners and provides a template for understanding neurodevelopment in clinical populations with social and communication difficulties.


Assuntos
Transtorno Autístico , Voz , Adolescente , Encéfalo/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Mães , Recompensa , Voz/fisiologia
5.
Comput Brain Behav ; 5(3): 261-278, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37873549

RESUMO

The n-back task is a widely used behavioral task for measuring working memory and the ability to inhibit interfering information. We develop a novel model of the commonly used 2-back task using the cognitive psychometric framework provided by Multinomial Processing Trees. Our model involves three parameters: a memory parameter, corresponding to how well an individual encodes and updates sequence information about presented stimuli; a decision parameter corresponding to how well participants execute choices based on information stored in memory; and a base-rate parameter corresponding to bias for responding "yes" or "no". We test the parameter recovery properties of the model using existing 2-back experimental designs, and demonstrate the application of the model to two previous data sets: one from social psychology involving faces corresponding to different races (Stelter and Degner, British Journal of Psychology 109:777-798, 2018), and one from cognitive neuroscience involving more than 1000 participants from the Human Connectome Project (Van Essen et al., Neuroimage 80:62-79, 2013). We demonstrate that the model can be used to infer interpretable individual-level parameters. We develop a hierarchical extension of the model to test differences between stimulus conditions, comparing faces of different races, and comparing face to non-face stimuli. We also develop a multivariate regression extension to examine the relationship between the model parameters and individual performance on standardized cognitive measures including the List Sorting and Flanker tasks. We conclude by discussing how our model can be used to dissociate underlying cognitive processes such as encoding failures, inhibition failures, and binding failures.

6.
Commun Biol ; 4(1): 405, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767350

RESUMO

Efficient memory-based problem-solving strategies are a cardinal feature of expertise across a wide range of cognitive domains in childhood. However, little is known about the neurocognitive mechanisms that underlie the acquisition of efficient memory-based problem-solving strategies. Here we develop, to the best of our knowledge, a novel neurocognitive process model of latent memory processes to investigate how cognitive training designed to improve children's problem-solving skills alters brain network organization and leads to increased use and efficiency of memory retrieval-based strategies. We found that training increased both the use and efficiency of memory retrieval. Functional brain network analysis revealed training-induced changes in modular network organization, characterized by increase in network modules and reorganization of hippocampal-cortical circuits. Critically, training-related changes in modular network organization predicted performance gains, with emergent hippocampal, rather than parietal cortex, circuitry driving gains in efficiency of memory retrieval. Our findings elucidate a neurocognitive process model of brain network mechanisms that drive learning and gains in children's efficient problem-solving strategies.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Lobo Parietal/fisiologia , Criança , Feminino , Humanos , Masculino , Rememoração Mental , Testes de Estado Mental e Demência , Modelos Psicológicos , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...